O.P.Code: 18EE0211

4

R18

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations June-2024

CONTROL SYSTEMS

	(Common to ECE & EEE)		1	
Time: 3 Hours		Max. Marks: 60		
1 111	PART-A			
	(Answer all the Questions $5 \times 2 = 10$ Marks)			
1	a Define transfer function.	CO ₁	L1	2M
1	b List the time domain specifications.	CO ₂	L1	2M
	c What is the necessary condition for stability?	CO ₃	L2	2M
	d Define phase margine.	CO ₄	L1	2M
	W. L. C	CO ₅	L2	2M
	e Write the formula for solutions of state equation. PART-B			
	(Answer all Five Units $5 \times 10 = 50$ Marks)			
	UNIT-I			
2	a Compare open loop and closed loop control systems based on different	CO1	L3	5M
	aspects?	CO1	L2	5M
	b List the properties of signal flow graph.	COI	ال الا	SIVI
	OR	001	т.4	1014
3	Using mason gain formula find the transfer function - for the signal flow	CO ₁	L4	10M

Using mason gain formula find the transfer function $\frac{C}{R}$ for the signal flow CO1 L4 10M graph shown in figure.

Find all the time domain specifications for a unity feedback control system CO2 L3 10M

whose open loop transfer function is given by $G(S) = \frac{25}{S(S+5)}$.

A positional control system with velocity feedback shown in figure. What is the response c(t) to the unit step input. Given that damping ratio=0.5.Also determine rise time, peak time, maximum overshoot and settling time.

UNIT-III

The open loop transfer function of a unity feedback control system is given CO3 10M by $G(s)H(s) = \frac{K}{(S+2)(S+4)(S^2+6S+25)}$. Determine the value of K which will cause sustained oscillations in the closed loop system and what is the corresponding oscillation frequency.

Sketch the root locus of the system whose open loop transfer function is f the system $G(s)H(s) = \frac{\Lambda}{S(S+2)(S+4)}$ UNIT-IV CO₃ L3 10M 7

A system is given by $G(s)H(s) = \frac{(4S+1)}{S^2(S+1)(2S+1)}$. Sketch the nyquist plot and 10M CO₄ 8 determine the stability of the system.

9 Obtain the transfer function of Lead Compensator, draw pole-zero plot and CO4 10M write the procedure for design of Lead Compensator using Bode plot.

Obtain a state model for the system whose Transfer function is given by **CO5** L3 10M 10

 $G(s)H(s) = \frac{(7S^2 + 12S + 8)}{(S^3 + 6S^2 + 11S + 9)}$

Determine the Solution for Homogeneous and Non homogeneous State CO5 **10M** 11 equations.

*** END ***